Aryl-aldehyde formation in fungal polyketides: discovery and characterization of a distinct biosynthetic mechanism.
نویسندگان
چکیده
Aryl-aldehydes are a common feature in fungal polyketides, which are considered to be exclusively generated by the R domain of nonreducing polyketide synthases (NR-PKSs). However, by cloning and heterologous expression of both cryptic NR-PKS and nonribosomal peptide synthase (NRPS)-like genes from Aspergillus terreus in Saccharomyces cerevisiae, we identified a distinct mechanism for aryl-aldehyde formation in which a NRPS-like protein activates and reduces an aryl-acid produced by the accompanying NR-PKS to an aryl-aldehyde. Bioinformatics study indicates that such a mechanism may be widely used throughout the fungi kingdom.
منابع مشابه
Functional replacement of the ketosynthase domain of <i>FUM1</i> for the biosynthesis of fumonisins, a group of fungal reduced polyketides
The genetic manipulation of the biosynthesis of fungal reduced polyketides has been challenging due to the lack of knowledge on the biosynthetic mechanism, the diffi culties in the detection of the acyclic, non-aromatic metabolites, and the complexity in genetically manipulating fi lamentous fungi. Fumonisins are a group of economically important mycotoxins that contaminate maize-based food and...
متن کاملReconstitution of biosynthetic machinery of fungal polyketides: unexpected oxidations of biosynthetic intermediates by expression host.
Reconstitution of whole biosynthetic genes in Aspergillus oryzae has successfully applied for total biosynthesis of various fungal natural products. Heterologous production of fungal metabolites sometimes suffers unexpected side reactions by host enzymes. In the studies on fungal polyketides solanapyrone and cytochalasin, unexpected oxidations of terminal olefin of biosynthetic intermediates we...
متن کاملBiosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications
A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic...
متن کاملBiosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications
A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic...
متن کاملNovel scheme for biosynthesis of aryl metabolites from L-phenylalanine in the fungus Bjerkandera adusta.
Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with L-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors ((14)C- and (13)C-labelled L-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2014